Multi-Agent Q-Learning for Minimizing Demand-Supply Power Deficit in Microgrids

نویسندگان

  • Raghuram Bharadwaj Diddigi
  • D. Sai Koti Reddy
  • Shalabh Bhatnagar
چکیده

We consider the problem of minimizing the difference in the demand and the supply of power using microgrids. We setup multiple microgrids, that provide electricity to a village. They have access to the batteries that can store renewable power and also the electrical lines from the main grid. During each time period, these microgrids need to take decision on the amount of renewable power to be used from the batteries as well as the amount of power needed from the main grid. We formulate this problem in the framework of Markov Decision Process (MDP), similar to the one discussed in [1]. The power allotment to the village from the main grid is fixed and bounded, whereas the renewable energy generation is uncertain in nature. Therefore we adapt a distributed version of the popular Reinforcement learning technique, Multi-Agent Q-Learning to the problem. Finally, we also consider a variant of this problem where the cost of power production at the main site is taken into consideration. In this scenario the microgrids need to minimize the demand-supply deficit, while maintaining the desired average cost of the power production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photovoltaic Microgrids Control by the Cooperative Control of Multi-Agent Systems

This paper presents a cooperative control which is applied to the secondary control of a microgrid controlled via a multi-agent scheme. Balancing power that leads to voltage and frequency stability in a microgrid is essential. The voltage and frequency regulations are limiting within the specified limits and conveying them to their nominal values. Limiting and conveying the voltage and frequenc...

متن کامل

Managing Power Flows in Microgrids Using Multi-Agent Reinforcement Learning

Smart Microgrids bring numerous challenges, including how to leverage the potential benefits of renewable energy sources while maintaining acceptable levels of reliability in the power infrastructure. One way to tackle this challenging problem is to use intelligent storage systems (batteries and supercapacitors). Charging and discharging them at the proper time by exploiting the variablity of t...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment

One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in genera...

متن کامل

A unified decision making framework for supply and demand management in microgrid networks

This paper considers two important problems on the supply-side and demand-side respectively and studies both in a unified framework. On the supply side, we study the problem of energy sharing among microgrids with the goal of maximizing profit obtained from selling power while meeting customer demand. On the other hand, under shortage of power, this problem becomes one of deciding the amount of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.07732  شماره 

صفحات  -

تاریخ انتشار 2017